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1. INTRODUCTION

Harmonic transformation of time in combination with the power series method was used by
Ince [1] for the investigation of periodic motions. (&&Ince algebraization''.) For example, by
introducing the new variables

q"sin t and x(t)"X(q(t)), (1)

in the Mathieu equation, xK#(a#b cos 2t) x"0, one obtains the equation (1!q2)
XAq2!qX@q#(a#b!2bq2) X"0, which admits periodic solutions in terms of the power
series with respect to the new temporal argument DqD)1 [2]. Transformation (1) with the
power series methods were employed for non-linear vibrating systems as well [3, 4].
Non-harmonic time transformations dealing with Jacobian functions can also be found in
the literature [5]. A non-smooth (sawtooth sine) oscillating time and the power series form
solutions were considered in reference [6] for oscillators with strongly non-linear
characteristics. As it is known, however, such transformations of time are restricted by
special cases and cannot be applied to any periodic regime. From the mathematical point of
view, it is caused by the fact that an inverse transformation does not exist over the whole
period of motion.

In the present work, di!erent versions of periodic time are introduced in such a way that
the corresponding transformations become valid for any periodic motion. This result is
achieved by the special complexi"cation of the co-ordinates. In addition, the Lie series form
solutions are suggested for the case of sawtooth time.

2. SINE-TRANSFORM OF TIME

Let us start from a generalization of change of variables (1). For the sake of compactness,
notations

q"q (u),sinu and e"e(u),cosu, (2)

will be used below.
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Proposition 1. Any su.ciently smooth periodic function x(u), whose period is normalized as
¹"2n, can be represented as

x (u)"X(q(u))#>(q(u))e(u), (3)

where the components X (q(u)) and > (q (u)) are of the power series form with respect to q(u).

Proof. Let us consider some periodic function, whose period is 2n, by showing explicitly the
terms with odd and even wave numbers in the corresponding Fourier series

x(u)"
A

0
2
#

=
+
n/1
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2n

cos 2nu#A
2n~1
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#
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By using notations (2), one can rewrite the tabulated expressions [7, formula No. 1.332] in
the form

cos 2nu"

n
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i/0
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n
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i/1

b
2i~1

q2i~1, (5)

where the coe$cients are listed in the referenced table. Substituting expressions (5) into
series (4) and reordering the terms, gives representation (3) and thus, completes the
proof. K

As seen from identities (5), the second component in representation (3) is due to the odd
cosine-waves and even sine-waves of the Fourier expansion.

It is important to note that combination (3) possesses special algebraic properties which
should be taken into account while introducing the new temporal argument q into the
di!erential equation of motion. Namely, di+erentiation, integration or any su.ciently
smooth function of representation (3) gives an element of the same two-component structure as
equation (3). These properties are simply dictated by the fact that none of the operations
listed above will destroy the periodicity of the function, and hence, Proposition 1 can be
applied to the result of the operations as well. For example, relations

(X#>e)@u"X
der

#>
der

e and f (X#>e)"X
f
#>

f
e (6)

hold.
Practically, the new components on the rigid-hand sides of the above relations can be

obtained by taking into account the trigonometric identities q@(u)"e(u), e@(u)"!q(u) and

e2"1!q2. (7)

Note also that the two parts of representation (3) apparently are linearly independent,
thus the whole combination becomes zero if and only if both components are zero.

For example, let us introduce the new time argument q"sin ut, where u is a frequency
parameter, into the Du$ng oscillator with no linear &&sti!ness term'' [8],

xK#fxR #x3"F sinut. (8)
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Let us represent a periodic solution in the form (3). By taking into account trigonometric
identities (7) on each step of the transformation, and collecting separately terms with
common factor e, one obtains

[(1!q2 )XA!qX @]u2#f [(1!q2 )>@!q>] u#3 (1!q2 )X>2#X3"Fq (9)

[(1!q2)>A!3q>@!>]u2#fX@u#3X2>#(1!q2)>3"0, (10)

where the unknown functions must satisfy the condition of analytical continuation on the
boundaries. The latter are obtained by substituting q"$1 into equations (9) and (10):

[!qX@u2!qf>u#X3!Fq] Dq"$1"0, (11)

[!(3q>@#>)u2#fX@u#3X2>] Dq"$1"0. (12)

It is seen, due to the damping term, that the above system does not admit a family of
solutions on which >(q),0. As a result, the particular form of the representation, i.e.,
transformation (1), is not valid in this case. Equations (9) and (10) appear to be complicated.
However, one can apply the power series methods remaining in the class of periodic
solutions.

3. SAWTOOTH TIME AND LIE SERIES SOLUTIONS

Interestingly enough, the form of representation (3) remains the same in the case of
sawtooth oscillating time, although the basic algebraic operation (7) is changed. Using the
above notations, let us denote the sawtooth sine and its "rst generalized derivative as,
respectively,

q"q (u),
2

n
arcsin sin

nu

2
and e"e(u)"q@(u). (13)

The amplitude and the period are normalized such that "rst generalized derivative (the
rectangular cosine) satis"es equality,

e2"1 (14)

for almost all u. By considering functions (13), it was shown earlier [9] that any periodic
function whose period is normalized as ¹"4 can be represented in the form (3), where q (u) and
e(u) are given by expressions (13). The corresponding proof did not employ any Fourier
series or trigonometric identities. (Moreover, the X- and >-components of the sawtooth
representation are not strongly supposed to be power series, so that the representation is
also true for non-smooth and even discontinuous functions.) The basic properties of the
sawtooth representation appeared to be the same as those formulated above for the
sinusoidal time. The related analytical methods for the class of strongly non-linear
oscillating systems can be found in reference [10]. Let us consider equation (8), assuming
that the forcing function is Fq(t/a), where a is a quarter of the period. The latter assumption
is not restrictive, since any periodic function can be expressed through the sawtooth sine
and then expanded into the power series. Let us represent periodic solutions in the
form (3), where the new temporal argument is given by expressions (13) and u"t/a.
Then, substituting representation (3) into equation (8) and considering the result as
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a two-component element of the algebra, one obtains the boundary value problem

XAa~2#f>@a~1#X>2#X3"Fq, (15)

>Aa~2#fX@a~1#3>X2#>3"0, (16)

> Dq"$1"0, X@Dq"$1"0, (17)

where boundary conditions (17) stay for elimination of the periodic series of Dirac functions
from the "rst and second derivatives of the co-ordinate (the smoothness condition [10]).

In order to introduce the Lie series solutions, let us consider the di!erential equations of
motion

xK#f (x, xR , t)"0. (18)

The idea of Lie series enables one to automatically construct the power series form
solutions as follows:

x(t)"exp (tG)x
0
"

=
+
k/0

tk

k!
Gkx

0
, G"xR

0

L
Lx

0

!f (x
0
, xR

0
, t)

L
LxR

0

#

L
Lt

, (19)

where G is a di!erential operator Lie associated with equation (18), and the initial
conditions are x

0
"x D

t/0
and xR

0
"xR D

t/0
. Note that the vector form of solution for

multiple-degree-of-freedom systems (x3Rn) would be the same, but the "rst two terms in
the expression for operator G must be treated as dot products. Applying now general
formula (19) to system (15) and (16), gives

C
X (q)
>(q)D"

N
+
k/0

qk
k! C

GkB

GkDD#O (qN`1) , (20)

where

G"A
L

LB
#C

L
LD

![afC#a2 (BD2#B3 )!a2Fq]
L

LA

![afA#a2(3DB2#D3)]
L

LC
#

L
Lq

(21)

and notations A"X@(0), B"X(0), C">@(0) and D">(0) have been introduced.
Further substitution of solution (20) into the boundary conditions (17) gives, generally

speaking, four non-linear algebraic equations. If being conducted, the corresponding
analysis gives the non-linear amplitude}frequency response of the system. In many cases,
the number of equations and unknowns can be reduced due to the symmetry of the
di!erential equations and the boundary conditions. For example, in the above case, one can
consider a family of solutions with odd-power terms for the X- and even-powers for the
>-component of the solution. Correspondingly, one should set C"0 and B"0. Such
a reduced algebraic problem still remains di$cult, however, if taking into account higher
power terms. On the other hand, the methodology is not restricted by any assumptions
about the system parameters.
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4. GENERAL CASE

Let us consider now a general class of functions Mq (u), e (u)N produced by a conservative
oscillator whose di!erential equation of motion is written in the form xK#P@(x)"0, where
P(x) is a function of the potential energy of the oscillator. In order to make the amplitude
normalized to x

ampl.
"1, let us introduce the normalized potential energy function and time

as P(x)"P(x)/P(1) and u"J2P(1)t. As a result, the di!erential equation of motion and
its "rst (energy) integral take the form

d2x

du2
#

1

2
P@(x)"0 and A

dx

duB
2
"1!P(x) (22)

respectively.
Let x"q (u) and dx/du"e(u) be the system co-ordinate and the velocity respectively.

The co-ordinate can be determined implicitly from the energy integral as

P
q(u)

0

ds

J1!P (s)
"u, (23)

whereas expressions (22) complete the di!erentiation rules and the basic algebraic identity
as follows:

q@(u)"e (u), e@(u)"!1
2
P@(q) (24)

and

e2"1!P(q). (25)

Now let us formulate (without proof ), Proposition 2.

Proposition 2. Any periodic function x(u) whose period is normalized to

¹"4 P
1

0

ds

J1!P (s)

can be represented in form (3), where the functions q(u) and e(u) are given by relations (23) and
(24), and properties (6) hold.

For example, one can transform equation (8) based on the potential energy function
P(x)"x2n. Then the boundary value problems (9)}(12) and (15)} (17) can be derived as
particular cases n"1 and nPR respectively. A physical meaning of the latter limiting case
was discussed in reference [10]. This case requires a generalized treatment of the di!erential
equations of motion though.

Let us summarize the above results. As seen from the basic algebraic expressions (7), (14)
and (25), as well as the form of the transformed equations, the sawtooth version of periodic
time appears to be relatively simple from the algebraic point of view such that the Lie series
method can be applied directly to the transformed equations. Finally, the above-mentioned
basic algebraic expressions are associated with the energy conservation of those oscillators
which generate the basic functions Mq (u), e(u)N.
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